Here is the list of publications and preprints from our project!

[1]
J.A. Villanueva-Garibay, A. Tilch, A.P. Aguilar Alva, G. Bouvignies, F. Engelke, F. Ferrage, A. Glémot, U.B. Le Paige, G. Licciardi, C. Luchinat, G. Parigi, P. Pelupessy, E. Ravera, A. Ruda, L. Siemons, O. Stenström, J.-M. Tyburn, A fast sample shuttle to couple high and low magnetic fields and applications in high-resolution relaxometry, Magn. Reson. 6 (2025) 229–241. https://doi.org/10.5194/mr-6-229-2025.
[1]
A. Pérez-Ràfols, G. Pérez-Ropero, L. Cerofolini, L. Sperotto, J. Roca-Martínez, R.A. Higuera-Rodríguez, P. Russomanno, W. Kaiser, W. Vranken, U.H. Danielson, A. Provenzani, T. Martelli, M. Sattler, J. Buijs, M. Fragai, Deciphering the RNA recognition by Musashi-1 to design protein and RNA variants for in vitro and in vivo applications, Nucleic Acids Research 53 (2025) gkaf741. https://doi.org/10.1093/nar/gkaf741.
[1]
M. Bielejewski, R. Kruk, D. Kruk, Dynamics of Supramolecular Ionic Gels by Means of Nuclear Magnetic Resonance Relaxometry—The Case of [BMIM][Cl]/Propylene Carbonate Gel, Molecules 30 (2025) 2598. https://doi.org/10.3390/molecules30122598.
[1]
G. Licciardi, L. Fiorucci, J.A. Villanueva-Garibay, O. Stenström, E. Ravera, F. Ferrage, C. Luchinat, G. Parigi, Molecular motions in olive oil from nuclear magnetic relaxation over five orders of magnitude of magnetic field, Journal of Molecular Liquids 437 (2025) 128538. https://doi.org/10.1016/j.molliq.2025.128538.
[1]
A.P. Aguilar Alva, L. Siemons, U.B. Le Paige, C. Wiame, F. Cordier, N. Wolff, G. Bouvignies, P. Pelupessy, F. Ferrage, The SOFAST-HMBC-HMQC experiment for pairing geminal methyl groups in valine and leucine side-chains, J Biomol NMR 79 (2025) 163–170. https://doi.org/10.1007/s10858-025-00464-z.
[1]
L. Fiorucci, F. Bruno, L. Querci, A. Kubrak, J. Bindi, N. Rodić, G. Licciardi, E. Luchinat, G. Parigi, M. Piccioli, E. Ravera, Extracting Trends From NMR Data With TrAGICo: A Python Toolbox, Magnetic Reson in Chemistry 63 (2025) 628–654. https://doi.org/10.1002/mrc.5537.
[1]
A. Kubrak, R. Pejanovic, K. Kamau, D. Kruk, F. Ferrage, G. Parigi, Field-dependent relaxation profiles of biomolecular systems, Phys. Chem. Chem. Phys. 27 (2025) 1756–1771. https://doi.org/10.1039/D4CP04306E.
[1]
A.C. Leal Auccaise, E. Masiewicz, K. Kolodziejski, D. Kruk, Dynamic of binary molecular systems—Advantages and limitations of NMR relaxometry, The Journal of Chemical Physics 160 (2024) 144116. https://doi.org/10.1063/5.0188257.
[1]
C. Champion, M. Lehner, A.A. Smith, F. Ferrage, N. Bolik-Coulon, S. Riniker, Unraveling motion in proteins by combining NMR relaxometry and molecular dynamics simulations: A case study on ubiquitin, J. Chem. Phys. 160 (2024) 104105. https://doi.org/10.1063/5.0188416.
[1]
A. Stankiewicz, A. Kasparek, E. Masiewicz, D. Kruk, Diffusion of Water Molecules on the Surface of Silica Nanoparticles─Insights from Nuclear Magnetic Resonance Relaxometry | The Journal of Physical Chemistry B, J. Phys. Chem. B 128 (2024) 1535–1543. https://doi.org/10.1021/acs.jpcb.3c06451.
[1]
S.D. Oberdick, K.V. Jordanova, J.T. Lundstrom, G. Parigi, M.E. Poorman, G. Zabow, K.E. Keenan, Iron oxide nanoparticles as positive T1 contrast agents for low-field magnetic resonance imaging at 64 mT, Sci Rep 13 (2023) 11520. https://doi.org/10.1038/s41598-023-38222-6.
[1]
F. Carniato, M. Ricci, L. Tei, F. Garello, C. Furlan, E. Terreno, E. Ravera, G. Parigi, C. Luchinat, M. Botta, Novel Nanogels Loaded with Mn(II) Chelates as Effective and Biologically Stable MRI Probes, Small 19 (2023) 2302868. https://doi.org/10.1002/smll.202302868.
[1]
L. Cerofolini, K. Vasa, E. Bianconi, M. Salobehaj, G. Cappelli, A. Bonciani, G. Licciardi, A. Pérez-Ràfols, L. Padilla-Cortés, S. Antonacci, D. Rizzo, E. Ravera, C. Viglianisi, V. Calderone, G. Parigi, C. Luchinat, A. Macchiarulo, S. Menichetti, M. Fragai, Combining Solid-State NMR with Structural and Biophysical Techniques to Design Challenging Protein-Drug Conjugates, Angew. Chem. Int. 62 (2023) e202303202. https://doi.org/10.1002/anie.202303202.
[1]
N. Bolik-Coulon, M. Zachrdla, G. Bouvignies, P. Pelupessy, F. Ferrage, Comprehensive analysis of relaxation decays from high-resolution relaxometry, (2023). https://doi.org/10.26434/chemrxiv-2023-b8qn6.
[1]
F. Bruno, L. Fiorucci, E. Ravera, Sensitivity considerations on denoising series of spectra by singular value decomposition, Mrc 61 (2023) 373–379. https://doi.org/10.1002/mrc.5338.
[1]
M.A. Kaster, M.D. Levasseur, T.G.W. Edwardson, M.A. Caldwell, D. Hofmann, G. Licciardi, G. Parigi, C. Luchinat, D. Hilvert, T.J. Meade, Engineered Nonviral Protein Cages Modified for MR Imaging, ACS Appl. Bio Mater. 6 (2023) 591–602. https://doi.org/10.1021/acsabm.2c00892.
[1]
D. Kruk, A. Kasparek, E. Masiewicz, K. Kolodziejski, R. Cybulski, B. Nowak, Water Dynamics in Highly Concentrated Protein Systems—Insight from Nuclear Magnetic Resonance Relaxometry, Int. J. Mol. Sci. 24 (2023) 4093. https://doi.org/10.3390/ijms24044093.
[1]
G. Licciardi, D. Rizzo, M. Salobehaj, L. Massai, A. Geri, L. Messori, E. Ravera, M. Fragai, G. Parigi, Large Protein Assemblies for High-Relaxivity Contrast Agents: The Case of Gadolinium-Labeled Asparaginase, Bioconjugate Chem. (2022). https://doi.org/10.1021/acs.bioconjchem.2c00506.
[1]
N. Bolik-Coulon, O. Languin-Cattoën, D. Carnevale, M. Zachrdla, D. Laage, F. Sterpone, G. Stirnemann, F. Ferrage, Explicit Models of Motion to Understand Protein Side-Chain Dynamics, Phys. Rev. Lett. 129 (2022) 203001. https://doi.org/10.1103/PhysRevLett.129.203001.
[1]
N. Bolik-Coulon, F. Ferrage, Explicit models of motions to analyze NMR relaxation data in proteins, J. Chem. Phys. 157 (2022) 125102. https://doi.org/10.1063/5.0095910.
[1]
O. Stenström, C. Champion, M. Lehner, G. Bouvignies, S. Riniker, F. Ferrage, How does it really move? Recent progress in the investigation of protein nanosecond dynamics by NMR and Simulation, Curr. Opin. Struct. Biol. 77 (2022) 102459. https://doi.org/10.1016/j.sbi.2022.102459.
[1]
L. Lang, E. Ravera, G. Parigi, C. Luchinat, F. Neese, Theoretical analysis of the long-distance limit of NMR chemical shieldings, J. Chem. Phys. 156 (2022) 154115. https://doi.org/10.1063/5.0088162.
[1]
F. Carniato, M. Ricci, L. Tei, F. Garello, E. Terreno, E. Ravera, G. Parigi, C. Luchinat, M. Botta, High Relaxivity with No Coordinated Waters: A Seemingly Paradoxical Behavior of [Gd(DOTP)]5– Embedded in Nanogels, Inorg. Chem. 61 (2022) 5380–5387. https://doi.org/10.1021/acs.inorgchem.2c00225.
[1]
G. Licciardi, D. Rizzo, E. Ravera, M. Fragai, G. Parigi, C. Luchinat, Not only manganese, but fruit component effects dictate the efficiency of fruit juice as an oral magnetic resonance imaging contrast agent, NMR Biomed (2021) e4623. https://doi.org/10.1002/nbm.4623.
[1]
Z. Wang, S. Pisano, V. Ghini, P. Kadeřávek, M. Zachrdla, P. Pelupessy, M. Kazmierczak, T. Marquardsen, J.-M. Tyburn, G. Bouvignies, G. Parigi, C. Luchinat, F. Ferrage, Detection of Metabolite–Protein Interactions in Complex Biological Samples by High-Resolution Relaxometry: Toward Interactomics by NMR, J. Am. Chem. Soc. 143 (2021) 9393–9404. https://doi.org/10.1021/jacs.1c01388.
[1]
A.A. Smith, N. Bolik-Coulon, M. Ernst, B.H. Meier, F. Ferrage, How wide is the window opened by high-resolution relaxometry on the internal dynamics of proteins in solution?, J Biomol NMR 75 (2021) 119–131. https://doi.org/10.1007/s10858-021-00361-1.
[1]
E. Ravera, L. Gigli, B. Czarniecki, L. Lang, R. Kümmerle, G. Parigi, M. Piccioli, F. Neese, C. Luchinat, A Quantum Chemistry View on Two Archetypical Paramagnetic Pentacoordinate Nickel(II) Complexes Offers a Fresh Look on Their NMR Spectra, Inorg. Chem. 60 (2021) 2068–2075. https://doi.org/10.1021/acs.inorgchem.0c03635.
[1]
G. Bellomo, E. Ravera, V. Calderone, M. Botta, M. Fragai, G. Parigi, C. Luchinat, Revisiting paramagnetic relaxation enhancements in slowly rotating systems: how long is the long range?, Magn. Reson. 2 (2021) 25–31. https://doi.org/10.5194/mr-2-25-2021.